Browse Topic: Materials

Items (64,200)
This specification covers procedures for identifying carbon and low-alloy steels, corrosion- and heat-resistant steels and alloys, maraging and other highly alloyed steels, and iron alloy sheet, strip, and plate, and aircraft tubingAMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate 0.005 to 1.000 inches (0.13 to 25.40 mm) in nominal thickness in the solution heat-treated conditionAMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a magnesium alloy in the form of welding wire (see 8.5AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 4.000 to 10.000 inches (101.6 to 254.0 mm), inclusive, in nominal thickness (see 8.5AMS D Nonferrous Alloys Committee
This specification covers procedures for ultrasonic immersion inspection of premium-grade wrought titanium and titanium alloy round billet 5 inches (127 mm) and over in nominal diameter (see 2.6.1). Metal alloy billets other than titanium may be tested to this specification with the use of suitable reference standardsAMS K Non Destructive Methods and Processes Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welding wireAMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 5.000 inches (127.00 mm), inclusive, in nominal diameter or least thickness (see 8.5AMS D Nonferrous Alloys Committee
This SAE Aerospace Standard (AS) defines the nomenclature for surface finishes commonly used for sheet and strip in aerospace material specifications. It is applicable to steel and to iron, nickel, cobalt, and titanium base alloysAMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes the requirements for a hard anodic coating on aluminum and aluminum alloysAMS B Finishes Processes and Fluids Committee
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpartBalasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
Barkan, TerranceWalthall, RhondaDixit, SunilDavid, AharonWebb, PhilipFletcher, Sarah
This document covers the recommended practice for determining the acceptability of the dendrite arm spacing (DAS) of D357-T6 aluminum alloy castings required to have tensile strength not lower than 50 ksi (345 MPaAMS D Nonferrous Alloys Committee
This document defines a recommended practice for addressing metal additive manufacturing (AM) machine requalification for all fusion-based metal AM machines. In general, this applies to powder bed fusion (PBF) and wire- or powder-fed directed energy deposition (DED) technologies. Plasma, electron beam, or lasers are applicable energy source(sAMS AM Additive Manufacturing Metals
This document covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made from a corrosion and heat resistant steel of the type identified under the Unified Numbering System as UNS S66286 and of 160 ksi tensile strength at room temperature, with maximum test temperature of parts at 1200 °FE-25 General Standards for Aerospace and Propulsion Systems
This specification covers a precipitation hardenable, corrosion- and heat-resistant nickel alloy in the form of seamless tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thicknessAMS F Corrosion and Heat Resistant Alloys Committee
This specification covers aircraft-quality, low-alloy steel in the form of round, seamless tubingAMS E Carbon and Low Alloy Steels Committee
Transient temperature analysis is involved in the thermal simulation of the heat treatment process, in which the hot metal temperature changes with respect to time from an initial state to the final state. The critical part of the simulation is to determine the heat transfer coefficient (HTC) between the hot part and the quenching medium or quenchant. In liquid quenching, the heat transfer between the hot metal part and water becomes complicated and it is difficult to determine HTC. In the current experimentation a medium carbon steel EN 9 rod with a diameter of 50 mm and length 100 mm was quenched in water and ethylene glycol mixture with different concentrations. A part model was created; meshed and actual boundary conditions were applied to conduct computational fluid dynamics (CFD) analysis. In order to validate CFD analysis the experimental trials were conducted. Experimental results showed a reduced cooling rate for the specimen, and also a reduction in heat-carrying capacity ofMutalikdesai, SachinShinde, TarangNanwatkar, Ravikant
In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite. First, while the friction between the two metalNguyen, Duc VinhTran, Van-XuanLin, Pai-ChenNguyen, Minh ChienWu, Yan-Jiu
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N). The wear tests on casted samples were carried out at the constant velocity of 2 m/sec, such that the corresponding wear rate for the experiment trials wasSivakumar, N.Sireesha, S. C.Raja, S.Ravichandran, P.Sivanesh, A. R.Aravind Kumar, R.
Beiker, SvenPorcel Magnusson, CristinaWaraniak, John
Items per page:
1 – 50 of 64200