Browse Topic: Human Factors and Ergonomics

Items (19,652)
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties. Notably, the treated alloy exhibited an impressive nearly 12% increase in surface hardness compared to its untreated counterpartBalasubramanian, K.Bragadeesvaran, S. R.Raja, R.Jannet, Sabitha
With population aging and life expectancy increasing, elderly drivers have been increasing quickly in the United States and the heterogeneity among them with age is also increasingly non-ignorable. Based on traffic crash data of Pennsylvania from 2011 to 2019, this study was designed to identify this heterogeneity by quantifying the relationship between age and crash characteristics using linear regression. It is found that for elderly driver-involved crashes, the proportion leading to casualties significantly increases with age. Meanwhile, the proportions at night, on rainy days, on snowy days, and involving driving under the influence (DUI) decrease linearly with age, implying that elderly drivers tend to avoid traveling in risky scenarios. Regarding collision types, elderly driver-involved crashes are mainly composed of angle, rear-end, and hit-fixed-object collisions, proportions of which increase linearly, decrease linearly, and keep consistent with age, respectively. The increaseZhang, ZihaoLiu, Chenhui
In order to improve the obstacle avoidance ability of autonomous vehicles in complex traffic environments, speed planning, path planning, and tracking control are integrated into one optimization problem. An integrated vehicle trajectory planning and tracking control method combining a pseudo-time-to-collision (PTC) risk assessment model and model predictive control (MPC) is proposed. First, a risk assessment model with PTC probability is proposed by considering the differentiation of the risk on the relative motion states of the self and front vehicles, and the obstacle vehicles in the lateral and longitudinal directions. Then, a three-degrees-of-freedom vehicle dynamics model is established, and the MPC cost function and constraints are constructed from the perspective of the road environment as well as the stability and comfort of the ego-vehicle, combined with the PTC risk assessment model to optimize the control. Finally, a complex multi-vehicle obstacle avoidance scenario isYang, TaoLiu, LiangXu, Zhaoping
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries. The most problematic of these are AIS 2+ and AIS 3+ upper-extremity and lower-extremityDalmotas, DainiusChouinard, AlineComeau, Jean-LouisGerman, AlanRobbins, GlennPrasad, Priya
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions. The TTC for sedans is significantly shorter than that forMatsui, YasuhiroNarita, MasashiOikawa, Shoko
Taking the semi-active suspension system as the research object, the forward model and inverse model of a continuous damping control (CDC) damper are established based on the characteristic test of the CDC damper. A multi-mode semi-active suspension controller is designed to meet the diverse requirements of vehicle performance under different road conditions. The controller parameters of each mode are determined using a genetic algorithm. In order to achieve automatic switching of the controller modes under different road conditions, a method is proposed to identify the road roughness based on the sprung mass acceleration. The average of the ratio between the squared sprung mass acceleration and the vehicle speed within a specific time window is taken as the identification indicator for road roughness. Simulation results show that the proposed road roughness identification method can accurately identify smooth roads (Class A–B), slightly rough roads (Class C), and severely rough roadsFeng, JieyinYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-BinRakheja, Subhash
In order to efficiently predict and investigate a vehicle’s vertical dynamics, it is necessary to consider the suspension component properties holistically. Although the effects of suspension stiffness and damping characteristics on vertical dynamics are widely understood, the impact of suspension friction in various driving scenarios has rarely been studied in both simulation and road tests for several decades. The present study addresses this issue by performing driving tests using a special device that allows a modification of the shock absorber or damper friction, and thus the suspension friction to be modified independently of other suspension parameters. Initially, its correct functioning is verified on a shock absorber test rig. A calibration and application routine is established in order to assign definite additional friction forces at high reproducibility levels. The device is equipped in a medium-class passenger vehicle, which is driven on various irregular road sections asDeubel, ClemensSchneider, Scott JarodProkop, Günther
For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions. The causal chain that maximizesTian, YanfeiQiao, HuiHua, LinAi, Wanzheng
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model. Next, the damping force optimal control strategy is designed by comprising of the Genetic Algorithm (GA) and the Linear Quadratic Regulator (LQRZhao, JianLi, WantingZhu, BingChen, ZhichengDing, ShuweiLi, JunweiHao, WenquanZhang, Yong
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model. The model is based on 2799 two-vehicle collision accident data from NHTSA CISS (The Crash Investigation Sampling System of NHTSA) traffic accident database.The results show that the model achieves high-precision prediction of occupant injury MAIS level (recall rate 0.8718, AUC(Area under Curve) 0.8579) without excluding vehicle model, andHuida, ZhangLiu, YuRui, YangWu, XiaofanFan, TiqiangWAN, XINMING
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passiveAli, Shaimaa A.Metered, HassanBassiuny, A. M.Abdel-Ghany, A.M.
With further development of autonomous vehicles additional challenges appear. One of these challenges arises in the context of mixed traffic scenarios where automated and autonomous vehicles coexist with manually operated vehicles as well as other road users such as cyclists and pedestrians. In this evolving landscape, understanding, predicting, and mimicking human driving behavior is becoming not only a challenging but also a compelling facet of autonomous driving research. This is necessary not only for safety reasons, but also to promote trust in artificial intelligence (AI), especially in self-driving cars where trust is often compromised by the opacity of neural network models. The central goal of this study is therefore to address this trust issue. A common approach to imitate human driving behavior through expert demonstrations is imitation learning (IL). However, balancing performance and explainability in these models is a major challenge. To efficiently generate training dataRebling, PatrickKriesten, ReinerNenninger, Philipp
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons. As a self-driving vehicle should do a muchCao, XinchengGuvenc, Levent
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging. A recommendation system for DCFC based on battery health optimization isHegde, BharatkumarHaskara, Ibrahim
This paper presents a simulation approach to assess the impact of changes to the charge point infrastructure and policies on Electric Vehicle (EV) user satisfaction, combining both market drivers with the practicalities of EV usage. An agent-based model (ABM) approach is developed where a large number of EVs, that represent the user population, drive within a region of interest. By simulating the driver’s response to their charging experience, the model allows large scale trends to emerge from the population to guide infrastructure policies as the number of EVs increases beyond the initial early adopter market. The model incorporates a Monte Carlo approach to generate EV and driver agent instances with distinct characteristics, including battery size, vehicle type, driving style, sensitivity to range. The driver model is constructed to respond to events that may increase range anxiety, e.g. increasing the likelihood of charging as the driver becomes more anxious. A charge pointFussey, PeterAkin-Onigbinde, AkintomiwaSkarvelis-Kazakos, Spyros
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company. Five different suspension systems were examined, including a wheel rotational speed-driven damperKikuchi, HironobuInaba, Kazuaki
This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios. It goes beyond simple gap acceptance assumptions used in previous studies, providingXia, TaokaiChen, HuiSu, Shaoka
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study. In addition, in order to improve performance, the driver's regular driving pattern is recognized in advance before driving and it is reflected in theJoo, Kihyungkim, Lina
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunctionLu, DuoHaines, SamJammula, Varun ChandraRath, Prabin KumarYu, HongbinYang, YezhouWishart, Jeffrey
Driver's driving style has a great impact on lane changing behavior, especially in scenarios such as freeway on-ramps that contain a strong willingness to change lanes, both in terms of inter-vehicle interactions during lane changing and in terms of the driving styles of the two vehicles. This paper proposes a study on game-theoretic decision-making for lane-changing on highway on-ramps considering driving styles, aiming to facilitate safer and more efficient merging while adequately accounting for driving styles. Firstly, the six features proposed by the EXID dataset of lane-changing vehicles were subjected to Principal Component Analysis (PCA) and the three principal components after dimensionality reduction were extracted, and then clustered according to the principal components by the K-means algorithm. The parameters of lane-changing game payoffs are computed based on the clustering centers under several styles. Secondly, a neural network model is designed based on the MatlabDu, HangXu, NanZhang, Zeyang
The challenges concerning noise, vibration, and harshness (NVH) performance in the vehicle cabin have been significantly changed by the powertrain shift from a conventional drive unit with an internal-combustion engine (ICE) to electric drive units (eAxles). However, there is few research regarding the impact of electrification on NVH considering the influence of the context such as multi-stimuli and traffic rules during a real-life driving. In this study, the authors conducted test drives using EVs and ICEVs on public roads in Europe and conducted a statistical analysis of the difference in driver impression of NVH performance based on interviews during actual driving. The impression data were categorized into clusters corresponding to related phenomena or features based on driver comments. Furthermore, the vehicles data (vehicle speed, acceleration, GPS information, etc.) were recorded to associate the driver impressions with the vehicle’s conditions when the comments were madeMise, ShionTorii, KenjiSellerbeck, PhilippHank, StefanIwano, HidetakaNishikoji, Takuya
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation. SecondlyZhou, WenboBi, GaoxinWang, YuhaiZhao, Jian
Collisions resulting in injuries or fatalities occur more frequently at intersections. This is partly because safe navigation of intersections requires drivers to accurately observe and respond to other road users with conflicting paths. Previous studies have raised questions about how traffic control devices and the positioning of other road users might affect drivers' visual search strategies when navigating intersections. To address these questions, four left-turn-across-path (LTAP) scenarios were created by combining two types of traffic control devices (stop signs and traffic lights) with two hazard starting locations (central and peripheral). Seventy-four licensed drivers responded to all scenarios in a counterbalanced order using a full vehicle driving simulator. Eye-tracking glasses were used to monitor eye movements, both before and after hazard onset. The results revealed that drivers at the signalized intersections took longer to fixate the LTAP hazard before onset, spentCaren, BrooklinZiraldo, ErikaOliver, Michele
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-makingGlaser, Yi G.Kiefer, RaymondGlaser, DanielLandry, StevenOwen, SusanLlaneras, RobertLeBlanc, DavidLeslie, AndrewFlannagan, Carol
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments. Second, the DMPs parameters are learned from the laneLiang, KaichongZhao, ZhiguoYan, DanshuLi, Wenchang
Battery Run-down under the Electric Vehicle Operation (BREVO) model is a model that links the driver’s travel pattern to physics-based battery degradation and powertrain energy consumption models. The model simulates the impacts of charging behavior, charging rate, driving patterns, and multiple energy management modules on battery capacity degradation. This study implements reinforcement learning (RL) to the simplified BREVO model to optimize drivers’ decisions on charging such as charging rate, charging time, and charging capacity needed. This is done by a reward function that considers both the driver’s daily travel demands and the minimization of battery degradation over a year. It shows that using appropriate charger type (No Charge, Level 1, Level 2, direct-current Fast Charge [DCFC], extreme Fast Charging [xFC]) with an appropriate charging time can reduce battery degradation and total charging cost at the end of the year while satisfying driver’s daily travel demand. Using theAltiner, IremOu, Shiqi (Shawn)
Driver state monitoring is a crucial technology for enhancing road safety and preventing human error-caused accidents in the era of autonomous vehicles. This paper presents CogniSafe, a comprehensive driver monitoring system that uses deep learning and computer vision methods to detect various types of driver distractions and fatigue. CogniSafe consists of four modules: Driver anomaly detection and classification: A novel two-phase network that proposes and recognizes driver anomalies, such as texting, drinking, and adjusting radios, using multimodal and multiview input. Gaze estimation: A video-based neural network that jointly learns head pose and gaze dynamics, achieving robust and efficient gaze estimation across different head poses. Eye state analysis: A multi-tasking CNN that encodes features from both eye and mouth regions, predicting the percentage of eye closure (PERCLOS) and the frequency of mouth opening (FOM). Head pose estimation: A CNN-based method that estimates theWani, AnkitSingh, JyotsanaKumari, DeepaIthape, AvinashRapanwad, Govind
Items per page:
1 – 50 of 19652